

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A REAL-TIME ROPE MODEL SUITABLE FOR GAME
ENGINE USAGE

by

Randy A. Garrido

September 2004

 Thesis Advisor: Michael J. Zyda
 Second Reader: Joseph A. Sullivan

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Rope Model
6. AUTHOR(S) Randy Ando Garrido

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis attempts to lay a foundation for producing a real-time rope model suitable for game engine usage.

The model presented here is only one of the many possible approaches in modeling a rope. The basic premise used

was derived from Erkin Tunca’s source code. The concept is then attempted on the Open Dynamics Engine (ODE) built

by Russell Smith.

This work shows promise but much still needs to be done. This thesis only scratches the surface on the

subject. In addition, ODE is primarily designed for (articulated) rigid bodies. Therefore, the next step is to create a

deformable body (the rope) in ODE.

15. NUMBER OF
PAGES 75

14. SUBJECT TERMS
Rope Model, Rope, Simulation, Virtual Environment, Mass-Spring Method

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A REAL-TIME ROPE MODEL SUITABLE FOR GAME ENGINE USAGE

Randy A. Garrido
Major, United States Army

B.A., University of Guam, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS
AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Randy A. Garrido

Approved by: Michael J. Zyda

Thesis Advisor

Joseph A. Sullivan
Second Reader

Rudy Darken
Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis attempts to lay a foundation for producing a real-time rope

model suitable for game engine usage. The model presented here is only one of

the many possible approaches in modeling a rope. The basic premise used was

derived from Erkin Tunca’s source code. The concept is then attempted on the

Open Dynamics Engine (ODE) built by Russell Smith.

This work shows promise but much still needs to be done. This thesis

only scratches the surface on the subject. In addition, ODE is primarily designed

for (articulated) rigid bodies. Therefore, the next step is to create a deformable

body (the rope) in ODE.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. THE ROPE MODEL ... 1
B. MOTIVATION... 2
C. CHALLENGES WITH MODELING A ROPE.. 3

II. BACKGROUND INFORMATION.. 7
A. SOURCE CODES UTILIZED ... 7

1. Lesson40.cpp... 7
2. Open Dynamics Engine (ODE).. 7

B. PHYSICS AND MATH BEHIND THE ROPE MODEL.......................... 8
1. Particles.. 9
2. Springs ... 11
3. Collision Handling ... 12

III. UNDERSTANDING THE MASS-SPRING METHOD USING TUNCA’S
CODE AS AN EXAMPLE ... 15
A. TUNCA’S CODE .. 15
B. CLASSES INVOLVED ... 15

1. RopeSimulation ... 15
2. Simulation .. 18
3. Spring ... 19
4. Mass .. 19
5. Lesson40.cpp... 20

IV. MODIFICATIONS TO TUNCA’S CODE ... 25
A. DEVELOPING AN IMPROVED ROPE MODEL................................. 25
B. DEVELOPING A SLIDING WEIGHTED PARTICLE ON A ROPE..... 29
C. DEVELOPING A JUMP ROPE .. 33

V. APPLYING AND TESTING THE CONCEPT TO ODE 39
A. A ROPE MODEL IN ODE .. 39
B. A SLIDING WEIGHTED SPHERE ON A ROPE 42

1. Weighted Sphere at a Fixed Point (on the Rope) 42
2. Sliding Weighted Sphere... 45

C. A JUMP ROPE... 46

VI. CONCLUSION.. 49
A. LIMITATIONS .. 49

1. Number of Particles (or Spheres)... 49
2. Thresholds on Mass, Force, and Time (in Tunca’s Code).. 50
3. Computer Processing Speed.. 51
4. Challenge in Transferring the Concept from Tunca’s

Code to ODE... 52

 viii

B. POSSIBLE MITIGATIONS TO CURRENT ISSUES 53
1. Variable Friction Value for Excessive Swaying................... 53
2. Applying Force in Sliding Weighted Sphere in ODE 54

C. FUTURE WORKS AND STUDIES... 54
1. Possibility of Applying Interpolation 54
2. Possibility of Using Vertices and Triangle Mesh 54

LIST OF REFERENCES.. 59

INITIAL DISTRIBUTION LIST ... 61

 ix

LIST OF FIGURES

Figure 1. Mass–Spring Connections.. 3
Figure 2. Function operate() in the class RopeSimulation 15
Figure 3. Function solve() in the class RopeSimulation..................................... 16
Figure 4. Function simulate() in the class RopeSimulation................................ 17
Figure 5. Function simulate() in the class Simulation .. 18
Figure 6. Function init() in the class Simulation ... 18
Figure 7. Function solve() in the class Spring.. 19
Figure 8. Function simulate() in the class Mass... 19
Figure 9. Function init() in the class Mass ... 20
Figure 10. Function update() in the main class Lesson40.cpp 21
Figure 11. Function draw() in the main class Lesson40.cpp................................ 22
Figure 12. Function solve() in the class Spring.. 25
Figure 13. Snapshot of a shortened “NeHe Rope” .. 26
Figure 14. Time increment in update()... 27
Figure 15. Modification to function update() .. 27
Figure 16. Snapshot of the “Improved Rope” .. 27
Figure 17. Jarring Effect in the “Improved Rope”... 28
Figure 18. Function simulate() in Mass.. 30
Figure 19. First version of function simulateHeavyParticle() in Mass 30
Figure 20. Function simulate() in RopeSimulation ... 31
Figure 21. Snapshot of Weighted Mass with an existing y-component................ 31
Figure 22. Second version of function simulateHeavyParticle() in Mass 32
Figure 23. Snapshot of Weighted Mass with y-component reduced.................... 32
Figure 24. Snapshot of the Jump Rope ... 33
Figure 25. Particles Aligned on Equation 2y ax b+= .. 34
Figure 26. Function update() in Rope .. 35
Figure 27. RopeSimulation Constructor... 35
Figure 28. Function simulate() in RopeSimulation ... 36
Figure 29. Function rotateEnds() in RopeSimulation ... 37
Figure 30. Function setRadius() in RopeSimulation .. 37
Figure 31. Rope In ODE .. 39
Figure 32. Rope (nodes only) In ODE ... 40
Figure 33. Rope With Weighted Sphere at 0.075 Time Step............................... 43
Figure 34. Rope With Weighted Sphere at 0.050 Time Step............................... 43
Figure 35. Rope With Weighted Sphere at 0.025 Time Step............................... 44
Figure 36. Rope With a Sliding Weighted Sphere ... 45
Figure 37. Snapshot of Jump Rope In ODE .. 46
Figure 38. Rope Using Disks to Generate Vertices ... 56
Figure 39. Triangle Meshes for Collision Detection (1).. 56
Figure 40. Triangle Meshes for Collision Detection (2).. 57
Figure 41. Springs Connecting Disks .. 58

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

This thesis would have not been possible if it weren’t for Erkin Tunca and

Russell Smith. Their works are the basis of this paper. I thank you both, and I

hope you are pleased with my effort.

I would also like to thank my Advisor, Prof. Michael Zyda, and my Second

Reader, CDR Joseph Sullivan. I have always felt welcome in your offices for

questions, comments, or inquiries; at the same time, you gave me room for

creativity. I learned more than I expected in writing this paper. Thank you.

To all my instructors at NPS, you all made an impact not only in my

education, but also in my professional and personal life. I may not remember

everything I have learned, but I will always have my toolbox with me wherever I

go. Thanks to all of you.

Most of all, I would like to extend my gratitude to my wife, Jennifer. I thank

you for your love, support, and understanding. And to my daughter, Abigail,

whom I felt bad for every time I wasn’t able to play with her. Maybe now I’ll have

more time to play with you. I love you both.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THE ROPE MODEL

…the important goals are believability (the programmer can cheat
as much as he wants if the player still feels immersed) and speed
of execution (only a certain time per frame will be allocated to the
physics engine). In the case of physics simulation, the word
believability also covers stability; a method is no good if objects
seem to drift through obstacles or vibrate when they should be lying
still, or if cloth particles tend to blow up. [1]

Modeling or simulating a rope in a virtual environment in real time requires

it not only be believable, it must also have adequate speed for proper execution.

This challenge is not limited to the physics behind the behavior of a rope; it is

also in its rendering at runtime. Naturally, the computer’s processing speed

impacts this dilemma greatly. The faster the computer’s processing speed the

bigger an algorithm it can handle, the faster it can be executed, and the more

realistic the rendering will be.

Current available stand-alone computer systems have more memory and

faster computing speed. Despite this dramatic improvement, unfortunately, it is

still practically impossible to create a “perfect” simulation of a rope and have it

rendered in real time. It still requires a delicate balance between believability and

computational speed.

The rope is an example of a deformable body. Deformable bodies differ

from rigid bodies in that deformable bodies can change shape and size while

rigid bodies cannot. The rope is a one-dimensional deformable body. [2]

There are two known techniques used in simulating these types of objects;

the Finite Element Method (FEM) and the Mass-Spring System. FEM has its

foundation in numerical methods. FEM is very consistent and powerful, but it is

also computationally intensive. [3] This method, despite its advantage in being

2

able to render a more accurate depiction of a rope, will obviously not meet the

requisite for real time rendering because of its computational need.

The second technique, the mass-spring method, is less intensive than the

FEM method. However, this method can still be intensive in the sense that it has

to be continually computed. In addition, the larger the quantity of particles (or

masses) involved, the harder the computer processor will have to work. This is a

limitation that will be discussed further in the last chapter.

B. MOTIVATION
There are physics engines, such as one developed by Havok, that are

able to strike the balance between believability and computational speed. The

author(s) of these codes managed to simulate a rope that may lack accuracy, but

are believable enough to the users that the lack of fidelity is easily overlooked.

Since Havok is a commercially available software, the end-user has to pay

a hefty sum in order to get the license to use their product. Unfortunately, this is

financially prohibitive. The ultimate goal of this paper is to create open source

codes on the subject for academic purposes.

The immediate goals of this thesis are: (1) to lay the foundation for

development of an open source code for a rope model stable enough to be

utilized in a simulated environment at runtime, (2) to identify issues and

challenges in applying the concept to ODE, and (3) to make recommendations

and approaches for future work on the subject. Given the scope of the subject

being covered, the main focus of this project is to primarily produce codes that

can be used for demonstration and that meet the objectives per aforementioned.

These codes can then be dissected and scrutinized for better understanding and

future study.

The source codes written for this thesis are not presented as the only

ways to simulate a rope model, but are the most logical approaches found given

the available resources. They are only a few of the many and the approaches

taken are far from perfect. Issues were encountered in the process. Some were

3

resolved, others were not. Some that were resolved created new issues, and

others were simply noted for future work.

C. CHALLENGES WITH MODELING A ROPE

Regardless of the technique used, the difficulty in modeling a rope is

primarily with its requirement for intense and continuous computation. In Erkin

Tunca’s code, for instance, a rope consisting of 50 particles would have 49

springs that attach the particles to one another (see Figure 1). Each particle

must then be computed for all the factors that affect it, like the constant

downward pull of gravity and the push or pull force of the spring.

Figure 1. Mass–Spring Connections

4

If one end of the rope is fixed in mid-air, the rest of the rope will hang

beneath it. Even though it is not moving, there is a constant gravitational pull

downward for all particles in the rope. The springs, on the other hand, pull on the

particles together in order to maintain their distances.

This constant pushing and pulling between gravity and springs alone

requires constant computation and adjustment. Now, multiply that 50 times, and

one can understand how intensive it can be, and that’s just with the rope alone.

One has to remember that interactive simulation programs have other objects in

the virtual environment that require computation as well.

To complicate the matter even more, add collision handling for all the

particles in the rope. For this example, the first particle in the rope has to be

compared with the other 49 particles one at a time to check if they are about to

collide. The second particle has to be compared to the other 48, the third to the

other 47, and so on. (In addition, we have to be able to collide the rope with other

objects in the virtual environment besides the rope.)

That means if the solution is done in a straightforward manner, the

algorithm will require 50 i49 i48 i ⋅ ⋅ ⋅ i1 times of look-up for potential collision.

That’s approximately equal to 3.04141e+64. This scenario (again) is only limited

to the rope alone.

The number of look-ups grows exponentially as the number of particles

gets larger. And if there are any other objects in the simulation, they have to be

added to the number of particles as well. When two objects are not about to

collide, collision detection exits without doing anything and moves on to other

objects. However, the amount of lookup or visit to the function that utilizes

collision detection will still be large.

The second half of collision handling is collision response. This is only

used when two objects are about to collide. Collision response may not have as

numerous a call as collision detection, but can be quite complex.

There are three options in dealing with collision response: the use of

kinematic response; “penalty method”; and calculation of an impulse force.

These three will be discussed further in the following chapter.

5

Another area of concern is with the accuracy in computation. Even if

double precision is used (for computation), there is a gradual decrease in the

accuracy of the computation. Therefore, it has to be approximated, resulting in

reduced fidelity.

As previously mentioned, it’s a complicated balancing act between

believability and computational speed. These demands for computation

combined with the desire to generate a realistic-looking rope simulated at runtime

definitely present a challenge.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND INFORMATION

A. SOURCE CODES UTILIZED

1. Lesson40.cpp
This source code can be found at http://nehe.gamedev.net. It is the latter

of a two-part tutorial written by Erkin Tunca. Lesson 39 is a simple physical

simulation engine that defines the motion of a mass (which is referred to as

particle in this paper) with the application of force in a three-dimensional

environment. [4]

Lesson 40 expanded on Lesson 39’s concept and used its concept to

create a logical approach in defining a rope’s behavior. [5] Tunca added the

spring as a constraining force attached to a pair of particles. He cleverly

transitioned from Lesson 39 to Lesson 40 and created a simulation of a rope in

real time.

Lesson40.cpp provided an algorithm that was fairly easy to comprehend.

This source code provided an excellent source of information using the concept

of mass-spring method for simulating a rope. Although it included a graphic

depiction of a rope, it was done in a limited virtual environment. Drawing a line

between the positions of two masses creates the rope. These masses are paired

sequentially by springs.

Tunca’s rope does not interact with any other object other than the

ground. The collision between the rope and the ground is a very simplified

version of collision detection and collision response. It is assumed that the focus

of this work is primarily to show the rope’s behavior.

2. Open Dynamics Engine (ODE)
Russell Smith created the ODE.. Smith and several other contributors are

continually improving this physics engine. The current version available is ODE

version 0.5 and it can be found at http://ode.org. [6]

8

The ODE is the other source utilized in this thesis. ODE is a physics

engine that provides an excellent library for simulating articulated rigid bodies.

This engine is claimed to be fast, flexible, robust, and has built-in collision

detection. [7]

ODE is designed for simulating vehicles, legged creatures, and moving

objects in the virtual environments. These articulated bodies are created when

rigid bodies are connected together with various kinds of joints. The ODE is

designed for interactive and simulation use. ODE does this by utilizing an

integrator that is stable enough to prevent the simulation from going out of

control. More emphasis was placed on speed and stability over physical

accuracy in the development of ODE. [8]

Fortunately, ODE has a built-in collision detection system. It has a list of

collision primitives (spheres, boxes, etc.) and more are expected to come. ODE

uses the concept of “spaces” in order to facilitate speed in identification of

potentially intersecting objects. [9]

ODE uses the concept of hard contacts. It’s a non-penetrating constraint

that prevents two bodies in the virtual environment from overlapping when they

collide. Virtual spring is another method that can be used for addressing this

issue, but Smith opted to use the concept of hard contact rather than virtual

springs. Although used by many simulators, a virtual spring is difficult to

accomplish. It is also extremely prone to errors. [10]

B. PHYSICS AND MATH BEHIND THE ROPE MODEL
The concept applied in this thesis consists of the mass-spring method for

the first list of examinations that appear in Chapter III. The concept used has

been derived from Tunca’s code since it provided a simple yet effective rendition

of a rope. The physics and math applied to the rope’s behavior are also

consistent and stable.

On one hand, the lack of several physical factors in Tunca’s model, such

as rotation, angular momentum, and collision detection (that are in ODE) made it

less accurate; on the other hand, it adds to the model’s simplicity and made the

9

code easier to understand. The absence of these features may have reduced

the accuracy of the rope’s physics, but it had much less impact to its believability

of the rope’s behavior.

The basic concept behind Tunca’s algorithm is also stable enough to

demonstrate certain features that are consistent with a rope’s basic physical

behavior. With some modifications, three versions were developed that show the

strength behind this concept. However, there were some modifications that were

used to “tweak” the code in order to make the visual rendition of the rope appear

realistic.

The second list used for examination is in Chapter IV. The pre-existing

function ball-and-socket joint from ODE is primarily used in this chapter. This is

the closest thing that resembles a spring in the first list of experiments. There

are several types of joint connections provided by ODE. However, the only type

of joint that would fulfill the requirement to simulate a rope would be the ball-and-

socket type.

1. Particles
An object in a simulated world often has a point within itself that serves as

a reference for its position in the virtual environment. This point of reference is

often tied to the object’sobjects center of mass, or sometimes center of gravity.

The object’s constant mass is also important in defining the behavior of the

object since it is an integral part that affects the object’s velocity, force, and

interaction with other objects

The particle used by this model only exists in theory. It does not occupy

any space, and it is simply defined as an infinitely small point in a 3-dimensional

world. The important aspect about the particle is its movement, and it is defined

by this point. The particle’s movement is described by the relationship between

the quantity of the mass ()m , force ()f , acceleration ()a , velocity ()v , and

position.

10

The equation used to derive the particle’s movement is the formula

f ma= . Mass is often given and assumed as a constant value. The derivation

shows the equation that is of relevance to simulating the mass in the rope model:

f ma=

vf m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

1df m
t t

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
=

2
df m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

2f td
m
⋅= (1)

Distance d is the distance traveled or the difference between the previous

and the current position. This is expressed in terms of x− , y− , and z − axis.

The mass’ position is continually updated. Looking at the equation, it is also

important to note that the value for mass cannot be lower than a certain

threshold; otherwise, this will cause instability to the algorithmic computation.

This subject will be covered in Chapter V.

The derived equation may at first seem inconsistent with Tunca’s code in

Figure 15. Actually, the two are the same. The two derivations taken may be

different, yet they both arrived at the same end state as shown below:

vf m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

ft mv=

m
f tv ⋅=

11

2f td
m
⋅= (or d v t= ⋅) (2)

Another interesting aspect to the derived equation is its reliance on time

and the “cumulative” forces applied to the particle. the mass, however, remains

constant. Therefore, the distance traveled is proportional to the force ()f

applied multiplied to time squared ()2t . Mathematically speaking, t is actually

dt since it is a small increment in time (expressed in milliseconds).

2. Springs
Spring is a force used as a constraint in order to maintain a given distance

between two particles. The equation for the spring used in this paper starts

where force ()f is equal to the negative stiffness ()k− multiplied by the

separation distance ()x , such as shown below:

f k x= − ⋅

However, this does not involve maintaining a certain distance between the

two particles. An addition of another variable d , the desired distance between

two particles, is needed to accomplish this as shown below:

()f k x d= − ⋅ − (3)

The spring then applies the resulting force to both particles it is “attached”

to. If the current distance between two particles is longer than the desired

distance, the forces applied to both particles are equal and toward each other; if

the distance is shorter, the forces applied are also equal but are in the opposite

direction. And if the current distance is equal to the desired distance, there is no

force applied.

12

3. Collision Handling
Tunca’s code, in manner of speaking, did address the issue of collision.

However, his approach starts with simply limiting the vertical component of each

particle not to go below the height of the ground. Since there are only two

objects in the illustrated virtual environment, he simply added forces to mimic

bouncing and friction directly on the rope. His approach suffices the need it was

intended for, but it cannot be expanded if other objects are added.

ODE, on the other hand, has the functions that address collision handling.

Sample codes are also provided for better understanding on how to utilize the

collision detection in ODE. “As objects move relative to one another, there are

two issues that must be addressed: (1) detecting the occurrence of collision and

(2) computing the appropriate response to those collisions.” [11]

Collision detection is used to consider the movements of objects relative

to one another. A basic approach to collision detection involves testing for

collision by determining whether two objects will intersect at a specific point at a

specific instance in time. A more sophisticated form tests the movement of one

object relative to other objects for overlap during a finite time interval. These

methods require computations that can become involved if complex geometries

are being considered. [12]

Collision response has three common options: kinematic response,

penalty method, and calculation of impulse force. Kinematic response is quick

and easy. For particles and spherical shaped objects, this response produces

good visual results. The penalty method maintains non-penetration by

introducing a temporary, non-physically based force. This method is typically

used when the response to collision occurs at a time step when penetration is

detected. The strength in using penalty method is in its ease of computation and

of incorporating the force into the computational algorithm that is used to

simulate rigid body movement. The third option, calculation of impulse force, is a

more precise way of inserting force into the system and is typically used when

time is backed up to the point of first contact. [13]

13

In modeling a rope, collision handling is a very complicated matter. The

rope is not one object, but a compilation of objects. The particles are joined by

springs. Each particle needs to be “wrapped” and centered in a sphere (or

another primitive object). The spheres’ diameter is the rope’s diameter.

The purpose of the each sphere is to “occupy” space. It gives the

particles volume and provides the geometry for collision handling. Since the

spheres are always in close proximity to one another, each particle often collide

to the other particles to its immediate left and right (or top and bottom).

The springs sometimes do not have enough force to prevent the spheres

from penetrating one another. One immediate solution to this is to do nothing

and allow the penetration. If the fault is unnoticeable and the simulation is still

believable, then the end result can be acceptable. It need not be perfect, only

appear to be.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. UNDERSTANDING THE MASS-SPRING METHOD USING
TUNCA’S CODE AS AN EXAMPLE

A. TUNCA’S CODE
Tunca’s code is basically stripped down to the bare necessities. The

virtual environment he created only has two objects in it. Some may find this

program simple, but it serves as an excellent source of information if one is only

interested in studying how to simulate the behavior of a rope.

B. CLASSES INVOLVED
The main classes that make the simulation work are RopeSimulation,

Mass (what is referred to as Particle in this paper), Spring, and Simulation.

Vector3D is another class used by this program; however, its primary purpose is

to simply contain the location of each mass in terms of the three axes and to

facilitate the ease of doing the necessary vector arithmetic computations with the

use of overloaded operators and a function.

1. RopeSimulation
For every time step, the sequence of events begins with RopeSimulation.

The function operate() contains three steps that generate the movement of each

mass in the rope. Whenever this function is called and given a value dot, the first

thing that happens is it initializes all the value of the force for all the masses to

zero, as shown in Figures 2, 6, and 9.

Figure 2. Function operate() in the class RopeSimulation

16

If the force for each mass is not reset to zero, it will accumulate or the

force will continue to exist. This is not a desired effect, since it will cause the

mass to move indefinitely. The accumulation of forces that are oriented in the

same direction will result in a corresponding increase in velocity.

Figure 3. Function solve() in the class RopeSimulation

Next, it calls on the function solve() as shown in Figure 3 above. This

function calls on each spring and for each spring to compute the forces required

to apply for the paired masses. See the section on class Spring to understand

how the forces are applied to the masses.

In another for-loop, it then applies forces derived from gravity and air

friction. If the mass is lower than the ground height, it is given a zero velocity

17

value for its y-component so that the ground friction applied is only in the x-z

plane. This simulates the friction generated between the masses in the rope and

the ground.

If the velocity of the mass has a downward direction, the ground

absorption is applied to the mass’ y-component force. Finally, the difference

between the height of the mass and the ground is multiplied to the ground’s

repulsion constant. The result of this application equates to the mass bouncing

off the ground.

The third and last step called is the function simulate() in Figure 4. First, it

calls the function simulate() in Simulation class, which then calls the function

simulate() of each mass (see Figures 5 & 8). The velocity and position values of

each mass are updated.

Figure 4. Function simulate() in the class RopeSimulation

Next, the position of the initial mass (ropeConnectionPos) in the rope is

updated. It is also checked to ensure that it stays above the ground. The new

values for the position and velocity (ropeConnectionVel) of the first mass are

saved.

By changing the values of ropeConnectionPos and ropeConnectionVel

this way, it bypasses the use of force in order to move the initial mass to the

18

desire place. Ideally, the particle should be moved with force. Unfortunately, this

is not as practical as it may seem.

The first question is how much force is necessary to move the particle

from point A to point B. The combined mass of the other particles have to be

considered as well since they will drag the initial particle down. Also, the length

of each time increment may be controllable, but the number of iteration is not.

So, this factor is unknown as well. Having two unknown variables will have one

making a “one size fits all” standard approximation for all conditions. This is not

good and must be avoided if possible.

2. Simulation
The function simulate() in the class Simulation simply iterates thru the list

of masses involved as shown in Figure 5. It calls on the function simulate() of

each mass and pass the value dt it received, as shown in Figures 5 and 8. The

function init() simply calls on the function init() in each mass.

Figure 5. Function simulate() in the class Simulation

Figure 6. Function init() in the class Simulation

19

3. Spring
The function solve() initially determines the distance between the two

masses. It then applies the modified spring equation (discussed in Chapter II) to

derive the force needed to maintain the distance between the two connected

masses. The frictionConstant is then added to reduce the forces before they are

applied to the pair of masses.

Figure 7. Function solve() in the class Spring

4. Mass

Figure 8. Function simulate() in the class Mass

Mass contains the value of the “mass” and its position. In order to move,

the mass receives two things: force and time. Given these two, the distance

traveled by the mass can be derived. The way the code is written, whenever the

function update() is called in the main file, the time is incremented into a constant

20

value. Therefore, it is the amount of force applied that determines the distance

traveled; and if the force is equal to zero, then the mass does not move. The

derivation of velocity and position is shown in Figure 8.

Figure 9 below shows how the force of each mass is initialized.

Figure 9. Function init() in the class Mass

5. Lesson40.cpp
The above steps are activated in the main file Lesson40.cpp. When

executed, the function update() receives the time that has elapsed since the

function was last visited. It receives the time in terms of milliseconds.

There are two key functions that make the simulation of the rope possible

in the main file pertaining to the simulation of the rope; the scene is updated,

then it is drawn. In the function update(), if the correct key is pressed, the

variable ropeConnectionVel is given a value depending on what axis it pertains

to. This change is then passed on to the function setRopeConnectionVel() in the

class RopeSimulation. It updates the variable ropeConnectionVel in

ropeSimulation. This velocity value will cause the first mass in the rope to move.

It will then cause a domino-effect to the rest of the rope and it will move

accordingly.

The time received by update() is in millisecond; therefore, it is defined as a

positive integer. It has to be converted into a fraction of a second, namely dt. It

is then divided by a variable maxPossible_dt to figure out how much iteration of

0.002 seconds there are. The integer 1 is added to make sure that there is at

least one iteration.

21

The value of dt is then changed to the result of dividing dt with the number

of iterations. This is done to update the value of dt since 1 has been added to

the number of iterations. The result is for the latest dt to be always less than

0.002 second. The updated values for the number of iterations and dt are then

applied in a for-loop that calls on the function operate() as shown in Figure 10

below:

Figure 10. Function update() in the main class Lesson40.cpp

Every time the function operate() is called, it goes through the process as

previously mentioned. This is done as many times as the number of iterations

allows in the for-loop. According to Tunca, 2 milliseconds is the maximum value

that can be used for time increment; otherwise, the errors in computation will

compound and cause imprecision. This is one way to produce instability to the

22

program and cause for it to “explode.” Also, by initializing the forces back to zero

in init(), the error(s) in computation is inhibited from compounding and from

producing instability to the algorithm.

Figure 11. Function draw() in the main class Lesson40.cpp

23

After the positions of the masses have been updated, the draw() function

uses a pointer in order to get the paired masses attached by the springs. It gets

these positions and draws lines between them and connects them one pair at a

time. The result is a simple simulation of a rope. See Figure 11.

The shadow of the rope is done in the same manner as the rope with one

exception. The vertical value of each mass is fixed to the same value as that of

the ground. This creates an illusion that there is a light source that cast the

rope’s shadow on the ground; while in reality, the shadow is simply drawn on the

ground.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. MODIFICATIONS TO TUNCA’S CODE

The focus of this chapter is to demonstrate the rope’s behavior under

three different modifications to Tunca’s code: an “improved” version of the rope,

a weighted particle sliding down the rope, and a jump rope.

A. DEVELOPING AN IMPROVED ROPE MODEL
The “improvement” made in this version is done by removing the attributes

that made the rope look elastic. This modification has been achieved by making

several critical alterations to the original code. First, the spring’s internal friction

has been removed. Second, the time increment used has been reduced from 2

to 1 millisecond. And third, the coefficient, or stiffness, of the spring was

increased from 10,000 to 20,000.

This increase in spring’s “stiffness” was not possible with the original code.

It would have caused instability to the algorithm of the code. This third

modification may have been a mere change of value in the variable, but it had a

tremendous impact on the elasticity of the rope.

Figure 12. Function solve() in the class Spring

26

There were other changes made, but they were minor and mainly done to

enhance the simulation by adding to its believability. These were simple

changes to the values of certain variables in order to create a more “realistic”

rendition of a simulated rope.

The purpose of internal friction in the class Spring is to reduce the forces

being applied to the particles. In effect, it slows the movement of the particles as

they adjust to maintain their distances from one another. This is done with the

variable named frictionConstant as shown in Figure 12.

Also, what this friction does is allow the springs to stretch or contract

longer than necessary, thus it enhances the effect of being springy or rubbery.

This effect to the graphic rendering of the rope is quite obvious when the

program is running. A snapshot of this effect is shown in figure 13 below:

Figure 13. Snapshot of a shortened “NeHe Rope”

The other factor that’s been changed is the time increment used in

computing the positions of each particle. Figure 14 shows lower portion of the

function update() and how dt is utilized. The modification made simply converts

the time received to an integer and use it in the for-loop to iterate the function

operate() as shown in Figure 15.

27

Figure 14. Time increment in update()

Figure 15. Modification to function update()

One assumption in the modified version is that time marches forward and

that the time received by the function update() is always larger than zero. If there

ever is a situation where there is a need to go in reverse, this algorithm will

bypass the operation of that particular occurrence. It’ll skip it since the for-loop

requires that the number of iterations be larger than zero.

Figure 16. Snapshot of the “Improved Rope”

28

By removing the internal friction, reducing the time increment, and

increasing the “stiffness” coefficient, the simulation of the rope has improved and

is a more realistic-looking. It doesn’t stretch like the original version does. Also,

after every movement, it doesn’t take the rope as long a time for it to come to a

complete stop as shown in Figure 16.

The rationale for the original methods used on the three aforementioned

subjects may have something to do with the computer processing capability

available when the original code was written. Tunca noted that he used a

computer that has a 500Mhz processing speed. The computer used for this

paper has a 3.06Ghz processing speed.

The use of maxPossible_dt allows for the least amount of iterations. The

lower the iterations the lesser the time it needs to execute the function, the faster

the algorithm. maxPossible_dt also allows the largest time increment possible

per iteration. Since the forces applied to each mass is done sequentially two at a

time, the larger the time increment, the faster the error accumulates, and the

more prone the algorithm is to “exploding.”

Figure 17. Jarring Effect in the “Improved Rope”

29

There is, however, one drawback found in the “improved” version. If the

rope is yanked, up or down, quick enough, it creates a jarring pattern that is not

consistent with a rope’s physical behavior. There’s no bending stiffness in the

rope that prevents this from happening. The original version didn’t need an

algorithm to create the stiffness since it’s slowed down by elasticity. The “kink”

exist with the original version a well, but it is less obvious than the one in the

improved version. The kink in the rope is shown in Figure 17.

This condition may have been due to the spring being too stiff. Therefore,

forces being applied to the pair of particles have to be reduced. Consequently,

returning the spring’s internal friction mitigated this condition. The force being

applied to the pair of particles have been slowed enough to reduce the kink. This

made the rope a bit springy, but not as noticeable as the previous version. This

elasticity is more obvious in the rope that contains the weighted particle.

B. DEVELOPING A SLIDING WEIGHTED PARTICLE ON A ROPE
In theory, if a person is rappelling down a rope, his mass is added to the

mass on the part of the rope he’s currently attached to. This added weight

affects the movement of the rope. Relative to any given particle along the rope,

his momentum will require considerably more force to move in any direction; and

because of his inertia, he will also require more force to slow down or stop. His

weight will also keep the rope above him taut proportional to his weight, while the

part of the rope below him will still be dangling.

Unfortunately, this is not a straight-forward physics translation with the

mass-spring method. Since Tunca’s code uses an elastic spring, the addition of

a heavier mass only exaggerated the rope’s elasticity. It also prolonged the

movement of the rope. There were times when the weighted particle moved in

slow motion.

 There were two attempts made to investigate the possibility of adding this

scenario to the improved rope. The first try was a straightforward approach. The

other reduced the vertical component of the weighted particle; in effect, the

weight has been reduced.

30

Inside the class Particle, the function simulate() generates the velocity and

position for a given particle. This function is crucial in rendering the graphics for

the simulation. The position generated here is what is used for the position of

each particle, which are in turn are used for rendering the simulated rope. See

Figure 18.

Figure 18. Function simulate() in Mass

There are three variables that affect the value of velocity (that ultimately

affects the value of the position). However, mass is the variable that is of real

relevance in order to simulate a weighted mass on the rope. The first approach

introduced to mitigate this condition is accomplished by creating an additional

function. The new method applied is direct and simply multiplies the value of the

mass 100 times as shown in Figure 19:

Figure 19. First version of function simulateHeavyParticle() in Mass

How this function is utilized is shown in Figure 20. The function simulate()

in RopeSimulation first checks where the weighted mass needs to be applied.

The rest of the function is exactly the same with that of the original code.

Unfortunately, using the newly created function has an unwanted side-

effect. As shown in Figure 21, the weighted mass has an excessive “bouncing

around.” Although the rope does not stretch like a rubber band, the force applied

primarily by gravity still causes the rope to be stretched. The force applied by the

spring causes it to be pulled back. This tugging between the weight (due to

gravity) and the spring causes the unwanted bouncing.

31

Figure 20. Function simulate() in RopeSimulation

The bouncing produced by this method is greatly influenced by the

weighted mass’ distance from the initial mass. The farther their distance from

one another, the more pronounced the bouncing. However, this bouncing is still

obvious even at closer distance to the initial mass.

Figure 21. Snapshot of Weighted Mass with an existing y-component

32

In hindsight, this side effect is consistent with the use of spring in an

environment that has gravity. Therefore, to mitigate this condition, one solution is

to either reduce the effect of gravity or remove the effect of the spring. Removing

the effect of the spring is not possible; it’s what keeps the distance between

particles.

Therefore, the only option is to reduce the effect of gravity on the weighted

mass. The reduced mass only pertain to the y-component of the weighted mass.

The value for this component is equal to the regular mass in the rope. This mass

cannot be equal to zero since it is a divisor to the force applied. The resulting

velocity will go to infinity and cause the simulation to go out of control. This is

done as shown in Figure 22.

Figure 22. Second version of function simulateHeavyParticle() in Mass

Figure 23. Snapshot of Weighted Mass with y-component reduced

33

Making the vertical component’s value equal to that of the regular mass

may have solved the concern about bouncing but it created a new one. The side

effect of this new method is not obvious until the weighted mass is near the

bottom end of the rope. Then the excessive swaying becomes more pronounced

(as shown in Figure 23).

One possible solution sought pertaining to the original question may be to

combine the two methods. The idea is to utilize the second method when the

rope is moving, and use the first once it stops. The theory is that the excessive

swaying will be reduced once the first method is applied.

Unfortunately, this approach is not as easy or as straightforward as it

seems. The question of when is the right time to switch from one method to the

other is a tricky issue. What is the trigger for the switch? What is the trigger to

switch back? These are just some of the questions that need to be addressed.

C. DEVELOPING A JUMP ROPE

Figure 24. Snapshot of the Jump Rope

The jump rope is actually simpler to develop that it seems. Conceptually,

all that is needed is setting the two ends to two fixed points in “mid-air” and have

34

the two ends rotated perpendicular to the orientation of the rope. In this

scenario, the distance between the two points is the original distance when the

rope was initialized.

However, applying this concept directly to the improved version of the

rope has an undesirable result. Since the springs are too stiff, the curve is

minimal. There are two approaches that can mitigate this condition; first, during

initialization, plot the positions of the particles along the line created by the

equation 2y ax b+= , where a and b influence the horizontal and vertical

components of the rope, respectively . See Figure 25 below.

Figure 25. Particles Aligned on Equation 2y ax b+=

The other way is the one applied in this paper. It is created by simply

decreasing the stiffness of the spring. This results in the middle of the rope

curving downward. This bow is consistent with any line or cable that bends due

to the influence of gravity, as shown in Figure 24.

There is one thing, however, that is not easily created. In order to

simulate a jump rope, the correct angular speed and radius have to be chosen to

the ends of the rope. If the radius is too short, regardless of the angular speed,

the desired result will not be achieved. Also, if the angular speed is too slow,

regardless of the radius’ length, the desired effect will not be achieved either.

35

Figure 26. Function update() in Rope

Figure 27. RopeSimulation Constructor

36

As shown in Figure 27, when the (jump) rope object is initialized, the

particles are created parallel to the x-axis where y=0 and z=0.25. The rope is

perpendicular with, and the two ends are equidistant to, the y-z plane. It starts

from the negative side of the x-axis and ends to its positive side.

Before the springs are attached, the position of the first particle

(ropeConnectionPos) is set equal to its initial position. The values for the initial

angle and radius are set. The position of the last particle, the other end of the

rope, is not done in the constructor. Initializing the position of the last particle in

the constructor was never attempted. Instead, it was done in the function

simulate() as shown in Figure 28.

Figure 28. Function simulate() in RopeSimulation

The function that rotates the ends of the rope is shown in Figure 29. The

integer value it receives is used for deciding whether the ends of the rope go

clockwise or counterclockwise. The if-statement that resets the value of degree

back to zero is not necessary. This value can go as high or as low as the

computer system will allow.

The last thing done is set the values for the initial particle’s position on a

circumference parallel to the y-z plane. The position for the other end would

have the same values for the y- and z-components. As previously mentioned, its

position is updated in the function simulation(). Figure 30 shows how the size of

the radius is increased or decreased.

37

Figure 29. Function rotateEnds() in RopeSimulation

Figure 30. Function setRadius() in RopeSimulation

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

V. APPLYING AND TESTING THE CONCEPT TO ODE

Given the concept from Chapter IV, there are two ways to create a rope

model using ODE: the first is by attempting to transfer a modified version of the

mass-spring method to physics engine; the second is to apply the concept by

working with existing functions in ODE. The first option is the more desirable of

the two. However, given the complexity of the material and the limited resources

available, the second choice is the more logical option if the intent is to simply

generate a simulation of a rope.

A. A ROPE MODEL IN ODE

Figure 31. Rope In ODE

The rope simulation depicted in Figure 31 is done by creating a number of

spheres (or nodes) and joining them successively with ball-and-socket joints.

There are other types of joints available in ODE. However, the ball-and-socket

joint is the only one that provides the required degrees of freedom for the

connections between the spheres.

40

The image shown in Figure 32 illustrates what happens when only the

actual spheres connected by the joints are drawn. The rope shown in Figure 31

included the “hollow” spheres that served to connect the nodes; they created an

illusion of a solid and continuous rope. The hollow spheres are drawn in a

straight line between nodes. These spheres are referred to as hollow since they

do not interact with any other object in the environment. They penetrate through

any object that’s in their path.

Figure 32. Rope (nodes only) In ODE

The intent in this segment is to simply demonstrate a rope in a virtual

environment using ODE. Unlike the previous chapter, three items are in this

environment: the rope, the ground, and the box. The static box is introduced for

the rope to interact with.

The commands for moving the rope around are shown in a separate

(command) window. The keys are used to control the movement of the first node

that hangs in mid-air. The rest of the rope follows and hangs below it due to

gravity. The directions available for each of the first node’s step are limited to the

three axes. The code is written such that movements can only be done in one

direction (from the three axes) at a time.

41

Since gravity pulls down any object that contains a mass, a method has to

be devised in order to keep the rope suspended in mid-air. Unfortunately, there

is no specific function available in the physics engine that will facilitate this need.

dBodySetPosition() is only good for initializing objects in the virtual environment.

The function can probably be applied during real time to objects that are

not connected to anything, but it does not work properly for the rope model. If

the distance between the first node’s current position to the desired position is far

enough, this function will “yank” the first node and leave the rest of the rope

behind.

The only function left that will do the “trick” is dBodyAddForce(). So, the

solution used in this paper goes back to the equation f ma= . In Chapters II, III,

and IV, the distance is derived by using force, mass, and time. In this section,

distance, mass, and time are given to solve for the force needed to move the first

node from point A to point B. The revised formula is shown below:

2

d
t

f m⎛ ⎞
⎜ ⎟
⎝ ⎠

=

ODE uses a time step to keep the simulation in motion relative to real

time. This time step and mass are both defined prior to the execution of the

program, and both are part of the solution. The third part, distance, is derived

from the current position and the desired position. The current position is

obtained by using dBodyGetPosition(). The desired position is either the last

desired position or is the one updated by the user by pressing certain keys on the

keyboard.

With the three aforementioned components, the first node of the rope is

kept at a fixed point and moves at the control of the user. However, the solution

has a minor side effect that is sometimes noticeable. The method produced

makes an adjustment to the first node every time step. The lag in computer

processing sometimes causes a visible displacement of the first node every time

step. This is almost negligible from a distance; however, if viewed at close

42

range, one can sometimes see the “jerking” phenomenon caused by the constant

adjustment to fix the first node in one place. Reducing gravity in half (from -0.5 to

-0.25) reduced the jerking of the node. The adjustments being made are

smoother.

B. A SLIDING WEIGHTED SPHERE ON A ROPE

Two versions were produced for this scenario. Unlike the previous

chapter, the issue or concern here is not only with the effect of gravity, it is also

with the ability to transfer the heavier sphere from node to node (or to slide down

the rope). The first version has the weighted sphere located at a fixed point on

the rope; the other has the weighted sphere sliding down the rope.

1. Weighted Sphere at a Fixed Point (on the Rope)
This setting was first created in order to examine the behavior of the rope

before continuing with the development of the sliding heavier sphere. This way,

unwanted results or behaviors can be isolated and addressed prior to combining

all the components. On the other hand, desired features can also be identified

and transferred to the final product.

Again, a box, non-static this time, is created as another object for the rope

to interact with. If the rope is to be used as a model for an interactive simulation,

its interaction with other objects has to be observed as well. The mass of the box

and the weighted sphere is 1.0, while the value for the rest of the spheres is

0.005. The influence of gravity on all objects in the simulated environment was

reduced to half the size of its original value. This was done to minimize the

stretching on the rope.

There are three conditions (based on time step) that were observed based

on this setting. Given the aforementioned setup values, the three time steps

observed are 0.075, 0.050, and 0.025.

43

Figure 33. Rope With Weighted Sphere at 0.075 Time Step

With 0.075 time step, the elasticity in the rope cannot keep up with the

gravity’s pull on the weighted object. The motion of the weighted sphere is also

slow. It also caused an inconsistent physical behavior with the rope. The

adjustments of the joints caused the “wiggling” shown in Figure 33.

Figure 34. Rope With Weighted Sphere at 0.050 Time Step

44

Changing the time step to 0.050 reduced the wiggling on the rope. The

rope is also less elastic, so it is not as stretched as in the previous condition. On

the downside, the simulation has also slowed down even more.

Figure 35. Rope With Weighted Sphere at 0.025 Time Step

A pattern emerges for this condition. The lesser the time step, the lesser

the rope’s elasticity and the slower the heavier sphere’s motion. As expected,

when the time step was reduced to 0.025, the rope is even less elastic. If the

wiggling exists, it’s unnoticeable. The motion of the heavier sphere, however,

slowed even further. Like in the previous chapter, reducing the influence of

gravity on the weighted sphere (no matter the size) created a “slow motion” effect

on the heavier sphere.

On the other hand, the weighted sphere’s interaction with the box on all

three time steps was consistent. They did not penetrate one another. Instead,

when the weighted sphere is given enough momentum (similar to a wrecking

ball), the box will bounce back when hit.

45

2. Sliding Weighted Sphere
Several attempts were made to enable the weighted sphere to slide down

the rope. The image of the larger sphere moving down the rope was achieved;

however, the physical behavior was not. The rope did not behave as if there was

an object of larger mass that is tugging on it at the position of the weighted node.

It behaves as if the larger sphere still has the same mass as the rest of the

spheres in the rope. The larger sphere also partially penetrates through the box

and the floor.

When the larger sphere hits the box with speed similar to the fixed

version, the impact to the box is minimal. The box moves as if it were hit by one

of the smaller spheres. To mitigate this condition the mass of the box was

reduced to that of the mass of the regular spheres. This made the heavier

sphere’s impact with the box more pronounced; unfortunately, the same can be

said of any sphere on the rope.

Figure 36. Rope With a Sliding Weighted Sphere

46

The functions dBodyGetMass(), dBodySetMass(), dMassAdjust(), and

dMassAdd() were all used in different combinations. Unfortunately, none yielded

the desired results. The conclusion, in regards to these functions, is that the

mass is one element that is not designed to be changed during runtime. Using

several combinations of the aforementioned functions even caused instability to

the program. Overall, none can be declared a successful attempt in creating a

believable rope simulation with a sliding heavier, larger sphere.

C. A JUMP ROPE

The attempt in creating a jump rope in ODE cannot be considered a

success either. Although the concept is similar with that of the previous chapter,

the “extra” elasticity on the rope creates a new situation that needs to be

addressed. The mechanics of the rope work and if the computer’s processor is

not taxed, the simulation will initially run fine. However, after a few loops, the

middle part of the rope often starts to lag behind.

Figure 37. Snapshot of Jump Rope In ODE

47

The source code written for this situation allows the user to adjust the

radius and rotational speed in real time. This is, however, not the answer to this

dilemma, but at least the user has the ability to make adjustment if he/she

chooses.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

VI. CONCLUSION

This work has tremendous potential but much still needs to be done. One

has to remember that ODE was not designed for deformable objects. An attempt

to create a rope model consisting of “rigid bodies” of spheres did not fair as

hoped. The illusion was not complete primarily due to the elasticity of the joints

and the computational limit created by excessive bodies. The other option listed

in Chapter V is the only option available.

There are other issues that make the transfer of concept from Tunca’s

code to ODE a challenge. A few are listed below along with a couple of potential

solutions. Other areas that may be of importance to the subject are covered as

well for future studies.

Although it may seem that the concerns addressed are of no relevance to

the ultimate goal, the concept should remain the same. It is the concept that may

be of relevance, as some of these conditions may surface again.

A. LIMITATIONS

1. Number of Particles (or Spheres)

With the improved version of Tunca’s code in Chapter IV, the number of

particles included can be as much as 200 with no ill-effect to the rendering of the

rope. At 300 particles, the slow down in rendition (or slow motion) is obvious.

The number of particles can still be increased. However, the increase in the

number of particles is in proportion to the decrease in rendition speed.

As for ODE, using rope_1.cpp as the base source code, the maximum

number of (sphere) bodies for the rope is 59. At this number, the simulation is

susceptible to error and locking up, or the program terminating itself. In fact,

between 53 and 59 bodies, immediately after the program has started, if the only

thing done is to slowly lower the first node down, the program will lock up and

display an error message.

50

When 60 bodies are created, an error message appears immediately. It is

obvious that as the number of bodies increase, the harder the computer’s

processing unit has to work. The issue is not directly associated with the

algorithm; rather, it is with the volume of computations that needs to be

accomplished before the next time step. If the processor can’t keep up with the

demand, an error message is produced and the program locks up or disengages.

At 52, it takes a little bit more work to induce error to the system. The

rope used in Figures 31 and 32, has 30 bodies. As long as there is no other

program running concurrently, this amount is fairly stable for the computer

system used for this thesis.

The instability is caused by the accumulated errors in computation,

compounded computational demands, or a combination of both. Time step has

to be decreased in order to eliminate this instability. However, decreasing the

time step also decreases the simulation speed.

2. Thresholds on Mass, Force, and Time (in Tunca’s Code)

In Tunca’s code, distance is derived by using force, time, and mass.

Looking back at equation 1, one can see how the three factors affect the distance

traveled by the particle. Most of all, as m approaches zero, d goes to infinity.

Therefore, m cannot equal zero.

Given that t is 0.001 second (sec) and m is 0.05 kilogram (kg), force is the

only factor that is not constant. As for the force, the spring has the largest effect

on the position of the mass. The biggest influence in the spring is its “stiffness.”

Therefore, the stiffness value is of biggest concern.

Using equation 3, 20,000 () 0.00002d x d= − ⋅ − ⋅ , or 0.4 ()d x d= − ⋅ − . So, the

distance the particle will travel primarily depends on its current distance relative

to the desired distance (multiplied by the magnitude 0.4). This is a reasonable

amount of force since it is not only applied to one particle, but on both particles

that the spring is attached to.

51

Using a magnitude of 0.5 may seem logical at first, but with the exception

of the two particles at the ends, each particle is connected to two springs. These

particles are adjusted twice. Therefore, the better approach would be to apply a

force of lower magnitude and gradually ease them into the right distance from

one another. A magnitude larger than or equal to 0.5 will produce an over-

correction.

Unfortunately, this does not address the jarring condition described in

Chapter IV. Reducing the stiffness of the spring does not alleviate this condition.

Reinstating the effect of the spring’s internal friction does. However, small it may

be, it also brought some elasticity back to the rope.

This is one of the drawbacks in using a spring. If the spring is weak, it’s

elastic. If it’s too stiff, the spring will produce an appearance similar to a chain

link. It is up to the developer to decide how much of each component needs to

be applied for the simulation to be considered believable.

Another interesting aspect to the source code is the mass and its impact

on the algorithm’s stability. Mass approaching the value zero also causes

instability to the program. The size of the mass limits the value of the numerator

(2f t⋅).

Given that time increment is 0.001 (sec) and the spring’s stiffness is

20,000, the algorithm is considerably stable at 0.05 kg per particle. If the mass is

reduced to 0.02 kg, the number of particles at which signs of instability in the

rope will appear is around 60. So, increasing the size of the mass allows an

increase to the spring’s stiffness and the program’s stability. The reverse is also

true.

3. Computer Processing Speed

In Tunca’s code, decreasing time increment has the same effect as

increasing the size of the mass, or in another way, enabling the algorithm to

reduce the size of the mass. However, time increment is dependent on the

speed of the processor used.

52

For this thesis, the increment was reduced from 0.002 sec to 0.001 sec.

The processor used is adequate enough to go through the iteration every

millisecond. Running the program with a slower processor will likely still be

possible. However, the penalty would come from the speed at which the

simulation is rendered.

As for ODE, there is no guarantee to the stability of the codes written.

Depending on the system’s processing speed and the concurrent tasks at hand,

there is a possibility that any of the codes can lock up or cause an error. This

issue requires further study to understand, and not so much as to directly

mitigate this condition, but to understand and define what limitations need to be

imposed on the source codes or to the system requirement.

4. Challenge in Transferring the Concept from Tunca’s Code to
ODE

In ODE, the type of joint analogous to the spring is the ball-and-socket

joint. This joint is elastic by design. Stiff springs and stiff forces are considered

bad. [14] This aspect was left as is and was not studied. Therefore, the rationale

behind the elasticity is not realized in this thesis.

In ODE, the size of the time step dictates the tradeoff between speed and

the combined aspects of accuracy and stability. The smaller the time step, the

more accurate and stable the simulation. [15] This is also true with Tunca’s

code. However, where the two differs is how time is used by both. ODE utilizes

a constant time step, while Tunca’s code uses a variable one.

With a constant time step, ODE forces all algorithms to finish before it

moves on to the next time step. This makes the program more accurate and

stable at smaller time step. However, it gets penalized on the speed at which it is

rendered. Increasing the time step makes it faster, but gets penalized on

accuracy and stability. The larger the time step, the smaller the tolerance for

error.

53

In the modified version of Tunca’s code, the increment is one millisecond.

The number of times it is iterated is based on the time it receives from the

system. Stability is increased by reducing the time increment from 2 to 1

millisecond. If instability occurs, the rationale will most likely come from the size

of the mass.

Utilizing the concept of spring (from Tunca’s code) directly to ODE will not

work due to the difference in how time increment is applied by the two. As

shown in Figure 15, the position of each particle is updated every millisecond.

The number of times this is done is based on the number of iterations. The

number of iterations received is the time elapsed in milliseconds from the

system’s time. For an Euler method, Tunca’s algorithm is very stable and

accurate. In ODE, however, time step is analogous to the number of iterations

(in Tunca’s code). The particles (or spheres) are updated every time step, not

every millisecond. This is the source of the challenge.

B. POSSIBLE MITIGATIONS TO CURRENT ISSUES

Some of the issues encountered for the source codes written for both

Tunca’s and ODE may surface again. Therefore, the following proposed

solutions are presented for the following specific areas.

1. Variable Friction Value for Excessive Swaying

When a pendulum swings, the only force acting on it is gravity, yet its

movement has a vector component perpendicular to gravity and sways from left

to right. If no force is further applied, air friction (drag) and gravity will slow the

pendulum down and bring it to a complete stop. Air friction is already accounted

for in Tunca’s code. Since the code has been modified, gravity’s effect on the

horizontal motion is not.

This trigonometric relationship between the horizontal and vertical vectors

is one idea that can be applied to the weighted particle to mitigate its excessive

54

swaying. Since the influence of gravity is already reduced in the weighted

particle, the variable force (or friction) needs to be applied to the horizontal

components only. Its value must be proportional to the weighted particle’s

horizontal velocity. Also, this friction must only be active when the first node

stops moving. Otherwise, this added friction will produce excessive and

unwanted dragging of the weighted particle.

2. Applying Force in Sliding Weighted Sphere in ODE

As described in Chapter V, attempts to create a sliding weighted sphere

did not succeed. The attempts were primarily focused on the mass. However,

mass is only one variable in equation 2. What is important is the desired result

on the left side of the equation which is the distance traveled.

If mass is left untouched and focus is placed instead on the force, there

may be a way to slow the weighted sphere down, or speed it up if necessary. As

far as colliding with other bodies, the same force needs to be increased in order

to simulate a heavier mass on impact.

C. FUTURE WORKS AND STUDIES

1. Possibility of Applying Interpolation

The “hollow” spheres described in Figure 32 are drawn in a linear manner

between nodes. This sometimes gives the appearance of a connection of links

and not a rope. To create a more realistic-looking rope, a cubic interpolation can

be used to lay the path for the positions of the additional spheres.

2. Possibility of Using Vertices and Triangle Mesh

The rope generated in Chapter V “is a body of bodies.” Rigid bodies

created in ODE have certain attributes that are not needed in simulating a rope.

Removing properties such as orientation, angular velocity, and inertia matrix from

55

each body should not produce adverse effects to the rope’s simulation. In fact,

removing these features should increase the speed at which the bodies are

computed. However, the computing speed gained is unknown at this time.

Also, in rendering the rope in ODE, the first sphere is used in place of all

the spheres in the rope. This was done intentionally for visual reasons. If the

actual spheres were drawn in the rendering phase, the simulation will show the

spheres rotating independent of one another. The first node does not rotate

most of the time. Even when it does, at least all of the bodies in the rope will

have a synchronous rotation.

Generating a rope model, such as the one done in Chapter V, is not the

ideal way. At close range, one can see the spheres that make up the rope. In

addition the hollow sphere bodies can penetrate through any protruding part of

any body, such as the edge of the box or within the rope itself.

Also, in certain conditions, the box can get wedged in between two

connected spheres bodies. Turning all the spheres in the rope into “solid” is not

an option either. So, a better method needs to be investigated since this

approach is not acceptable.

One possible solution to the aforementioned dilemma is applying the

concept of vertices as shown in Figure 38. The blue green and light green disks

are analogous to the actual and hollow sphere bodies, respectively. Here,

however, the key components are not the disks, but the vertices generated from

the disks.

As described previously, the positions of the generated disks can be

derived from the line (or equation of a line) generated by interpolating the

positions of the actual disks. The disks, both actual and generated, have to be

tangent to the line. This can be solved by using the first derivative of the

interpolated line. From the disks, vertices can be generated. Texture mapping

can then be applied to these vertices.

For collision detection, triangle mesh (or trimesh) can be used to wrap

around the rope. Also, it may be possible to only partially cover the rope’s

surface. If the trimeshes are distributed, such as in the examples shown in

56

Figure 39, penetration of the uncovered parts should be almost impossible. If

there is a penetration, it would be minimal, and may actually be better in a sense

that it will mimic indentation. This would be consistent with a real rope since

ropes are often made of pliable or soft material.

Figure 38. Rope Using Disks to Generate Vertices

Figure 39. Triangle Meshes for Collision Detection (1)

57

One does not have to be limited to the trimesh examples shown in the

previous page. These are just ideas. One may consider the example in Figure

40 if less accuracy is acceptable or desired. The benefit of larger trimeshes

includes the further reduction in their quantity.

Figure 40. Triangle Meshes for Collision Detection (2)

ODE has a feature called space. Space is utilized to speed up collision

detection by performing a process called collision culling.[16] By combining this

feature with trimeshes, collision detections should be minimized. The trimeshes

shown in Figures 39 and 40 can even be made to overlap, since it is possible to

ignore collision detection between objects that are in the same space.

Another interesting approach in developing a rope is using diagonal

springs to connect the disks as shown in Figure 41. The springs will not only

maintain the distance between disks, they will also maintain the positions of

vertices of one disk relative to vertices of the adjacent disks.

In effect, it will influence the rope’s lateral movement. This setup will add

torque resistance between disks. It will also create a tension that will resist

bending or that will produce curling.

58

However, numerous springs will require a faster computational processor.

One possible solution may be a combination of all the aforementioned that

enables the features when needed, and disables when not. It is also possible to

examine each situation on a case-by-case basis and use only the solutions that

are needed.

Figure 41. Springs Connecting Disks

59

LIST OF REFERENCES

1. Thomas Jakobsen, “Advanced Character Physics,”
<http://www.ioi.dk/Homepages/thomasj/publications/gdc2001.htm> (1 August
2004).

2. Andrew Bowell, “Ready to Wear,” CGI Magazine, January 2002,

<http://oldsite.havok.com/news/coverage/01-01-02.html> (1 August 2004).

3. Bowell.

4. Erkin Tunca, “Rope Simulation,”

<http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=40> (1 August 2004).

5. Tunca.

6. Russell Smith, “Open Dynamics v0.5 User Guide”

 <http://ode.org/ode-0.5-userguide.html#sec_1_1_0> (29 May 2004).

7. Smith, 1.

8. Smith, 1.

9. Smith, 1.

10. Smith, 1.

11. Rick Parent, Computer Animation: Algorithm and Techniques (San

Francisco: Morgan Kaufman Publishers, 2002), 216.

12. Parent, pg. 216.

13. Parent, pg. 217.

14. Smith, 74.

15. Smith, 73.

16. Smith, 52.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Robert McGhee
Naval Postgraduate School
Monterey, California

